Interrogating Conformationally Dependent Electron-Transfer Dynamics via Ultrafast Visible Pump/IR Probe Spectroscopy

Igor V. Rubtsov, Naomi P. Redmore, Robin M. Hochstrasser,* and Michael J. Therien*
Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323
Received September 23, 2003; E-mail: therien@sas.upenn.edu

It has long been recognized that the magnitude of donor-acceptor (D-A) electronic coupling could depend sensitively upon both D-A orientation and the overall conformation of donor-spaceracceptor (D-Sp-A) assemblies. ${ }^{1}$ For D-Sp-A systems that manifest a high degree of ground-state structural heterogeneneity, where simple theoretical analyses predict a wide distribution of configurationally dependent electron transfer (ET) rate constants, such conformational and orientational control of ET dynamics has been little studied. ${ }^{2}$ In this report, we demonstrate for the first time the utility of the time-resolved visible pump/mid-infrared (IR) probe spectroscopy ${ }^{3}$ to interrogate directly, and provide unique information regarding, conformationally dependent photoinduced ET dynamics and the subsequent structural evolution of the resulting chargeseparated state.

The particular efficacy of ultrafast IR spectroscopy in the investigation of ET processes derives from the fact that IR vibrational bands are narrow: vibrational frequencies are thus sensitive to molecular electronic states and therefore enable state-specific detection. Furthermore, because vibrational transitions are more spatially localized than electronic transitions, transient IR spectra inherently possess considerable structural information. Fast visible pump/IR probe methods consequently merge the advantages of vibrational spectroscopy (spectral resolution and sensitivity) with the time resolution provided by short fs laser pulses. Exemplary visible pump/IR probe experiments involving N-[5-(10,20-diphenylpor-phinato)zinc(II)]-N (octyl)pyromellitic diimide ($\mathbf{P Z n} \mathbf{- P I}$) and [5-[4'(N-(N^{\prime}-octyl)pyromellitic diimide)phenyl)ethynyl]-10,20-diphenylporphinatolzinc(II) $(\mathbf{P Z n}() \mathbf{P I})$ (Figure 1) emphasize these points.

The photoinduced charge separation (CS) and thermal charge recombination (CR) ET dynamics of $\mathbf{P Z n}-\mathbf{P I}$ and $\mathbf{P Z n}() \mathbf{P I}$ have been characterized previously using visible pump-probe spectroscopy; ${ }^{4}$ in these systems, $k_{\mathrm{CS}} \gg k_{\mathrm{CR}}$ for $\mathbf{P Z n}-\mathbf{P I}$, while the opposite is true for $\mathbf{P Z n}() \mathbf{P I}$ [mean rate constants: $\mathbf{P Z n}-\mathbf{P I} k_{\mathrm{CS}}=1.9 \mathrm{ps}^{-1}$, $k_{\mathrm{CR}}=15 \mathrm{ps}^{-1} ; \mathbf{P Z n}() \mathbf{P I}: k_{\mathrm{CS}}=22 \mathrm{ps}^{-1}, k_{\mathrm{CR}}=3.3 \mathrm{ps}^{-1}(99: 1$ $\mathrm{CDCl}_{3}:$ pyridine; $23{ }^{\circ} \mathrm{C}$)]. Figure 1 A exhibits the IR fingerprint of the S_{1}-excited state of a benchmark (porphinato)zinc(II) (PZn) complex, ([5,10,15,20-tetraphenylporphinato]zinc(II), TPPZn) obtained 1 ps following electronic excitation, while Figure 1B shows the polarized, visible pump/IR probe transient spectra obtained for $\mathbf{P Z n}-\mathbf{P I}$ at a time delay $\left(t_{\text {delay }}\right)$ of 0.7 ps ; note that the spectrum is dominated by ground-state bleaching bands (1775,1730 , and 1375 cm^{-1}) and absorptive transitions ($1655,1440,1300-1350 \mathrm{~cm}^{-1}$) associated with the $\mathbf{P Z n}^{+}-\mathbf{P I}^{-}$CS state. ${ }^{5}$ It is important to underscore the two intense carbonyl modes observed in the $\mathbf{P Z n}-$ PI linear-IR spectrum: a strong, B-polarized transition at 1730 cm^{-1}, and a weaker A-polarized mode at $1775 \mathrm{~cm}^{-1}$. These polarized vibrational modes, coupled with removal of degeneracy of the $\mathbf{P Z n} \mathrm{Q}_{x}$ and Q_{y} transitions, provide the necessary spectroscopic handles (Figure 1B) to assess the mean interplanar torsional angle between the D and A units. Previous work establishes that introduction of sufficient electronic asymmetry converts the classic PZn circular absorber into a C_{2}-symmetric elliptical chromophore,

Figure 1. (A) Transient IR spectra of the TPPZn S_{1}-excited state; the FTIR spectrum is displayed for comparison. (B) Exemplary polarized visible pump/IR probe transient spectra of PZn-PI (FTIR spectrum, inverted). (C) Polarized transient IR spectra of PZn()PI with deconvoluted A- and B-polarized absorptive components highlighted. (D) Time-dependent apparent anisotropy of the $\mathbf{P Z n}^{+}() \mathbf{P I}^{-} 1648 \mathrm{~cm}^{-1}$ radical anion absorption band and the corresponding PZn-PI torsion angle θ; the lines denote the best biexponential function fits of these respective decays ($r: 180 \pm 70 \mathrm{fs}$, $4.3 \pm 0.8 \mathrm{ps} ; \theta: 1.4 \pm 0.6 \mathrm{ps}, 7 \pm 5 \mathrm{ps})$. Data were obtained at $23 \pm 1^{\circ} \mathrm{C}$; other experimental conditions are indicated in the figure panel insets.
where x - and y-polarized transitions are not degenerate. ${ }^{6,7}$ In a polarized visible pump/IR probe experiment, note that the anisotropy of the PI B-polarized transitions (r_{B}) depends on the PZn-to-PI torsional angle θ (Scheme 1), while the anisotropy of the Apolarized bands $\left(r_{\mathrm{A}}\right)$ does not. Therefore, the A-polarized band anisotropy can be related to the porphyrin Q-transition ellipticity parameter (eq 1), ${ }^{7}$

$$
\begin{equation*}
\gamma=\frac{0.2+r_{\mathrm{A}}}{0.4-r_{\mathrm{A}}} \tag{1}
\end{equation*}
$$

Scheme 1

Table 1. Anisotropy Values of the IR Bleach Bands and Evaluated Ground-State Mean Interplanar Torsional Angles

	$r_{A}^{R_{a}}$	$r_{B}^{R_{a}}$	$\tilde{\theta}(\mathrm{deg})$	$t_{\text {delay }}(\mathrm{ps})$
$\mathbf{P Z n}-\mathbf{P I}$	0.19	-0.19	78 ± 4^{b}	0.5
$\mathbf{P Z n}() \mathbf{P I}$	0.18	-0.11	50 ± 3	0.47

${ }^{a}$ The anisotropy error is ± 0.01 and ± 0.005 for A and B bands, respectively. ${ }^{b}$ See ref 8.
which describes the ratio of the x - and y-polarized S_{1}-state extinction coefficients at the excitation wavelength ($\gamma=\epsilon_{\mathrm{Q}_{x}} / \epsilon_{\mathrm{Q}_{\mathrm{y}}}$); this parameter can be determined directly from the early time anisotropies. Knowing γ enables the evaluation of $\overline{\cos ^{2} \theta}$ from the anisotropy of the B-polarized bands (eq 2):

$$
\begin{equation*}
\overline{\cos ^{2} \theta}=\frac{5 r_{\mathrm{B}}+1}{2-5 r_{\mathrm{A}}} \tag{2}
\end{equation*}
$$

Table 1 summarizes the results of such an analysis for $\mathbf{P Z n}-\mathbf{P I}$ and $\mathbf{P Z n}() \mathbf{P I}$ at $\sim 0.5 \mathrm{ps}$ delay times. Given the mathematical meaning of $\tilde{\theta}=\cos ^{-1} \sqrt{\overline{\cos }^{2} \theta},{ }^{8}$ and coupling this information with electronic structural studies and MOPAC-determined dihedral angle energy distribution data, ${ }^{4, \mathrm{~b}}$ suggests that the mean $\mathbf{P Z n}$-toPI interplanar torsional angle for electronically excited $\mathbf{P Z n} \mathbf{- P I}$ species $\left({ }^{1} \mathbf{P Z n} \mathbf{*}-\mathbf{P I}\right)$ that have undergone ET at this delay time is centered at 90° with a distribution width of 14°, while the analogous angle for ${ }^{1} \mathbf{P Z n} *() \mathbf{P I}$ at $t_{\text {delay }}=0.5 \mathrm{ps}$ is centered at 50°.

For the inhomogeneously broadened carbonyl IR bands of Figure 1 , the frequency distribution maps the torsional angle conformational distribution; the time evolution of the transient spectra can be used to monitor the ET rate dependence upon θ (Scheme 1). In this regard, the $\mathbf{P Z n}() \mathbf{P I}$ spectral evolution shows that absorption maximum of the $\mathbf{P I}^{-}$band at $\sim 1650 \mathrm{~cm}^{-1}$ both red-shifts $3.5 \mathrm{~cm}^{-1}$ and exhibits apparent anisotropy changes characterized by a 4 -ps time constant (Figure 1C,D), while the anisotropy of the A-polarized bleach band at $1775 \mathrm{~cm}^{-1}$ decays only on the rotational time scale ($\tau_{\text {decay }} \approx 250 \mathrm{ps}$). Note that analysis of the B-bleach band dynamics at $\sim 1730 \mathrm{~cm}^{-1}$ is complicated due to nonlinear signal contributions that derive from vibrational coupling; ${ }^{9,10}$ such features are clear in transient spectra at later times (Figure S2). The time evolution of the transient spectra in the $\mathbf{P I}^{-}$absorption region ($1620-1700 \mathrm{~cm}^{-1}$) was therefore utilized to obtain dynamics-correlated structural information.

As $k_{\mathrm{CS}} \ll k_{\mathrm{CR}}$ in $\mathbf{P Z n}() \mathbf{P I}$, the observed time evolution of the IR spectra monitors structural evolution in the ${ }^{\mathbf{1}} \mathbf{P Z n}{ }^{*}() \mathbf{P I}$ excited state: at each $t_{\text {delay }}$, the CS state absorption band reflects the weighted distribution of ${ }^{1} \mathbf{P Z n} *() \mathbf{P I}$ conformers that undergo ET at that time. The measured time-dependent anisotropy and maximal absorption band frequency therefore vary with the depletion of ${ }^{1} \mathbf{P Z n} *() \mathbf{P I}$ conformeric populations that differ with respect to torsional angle θ and necessarily manifest different CS rate constants. To evaluate the time dependence of $\tilde{\theta}$, the B-polarized vibrational mode contribution to the $\sim 1650 \mathrm{~cm}^{-1}$ band was analyzed (Figure 1C) as a function of delay time, assuming constant anisotropy of the A-polarized mode and time independence of the relative oscillator strengths of the A- and B-polarized absorptions.

This analysis (Figure 1D) indicates that more planar ${ }^{1} \mathbf{P Z n} *() \mathbf{P I}$ conformers exhibit larger-magnitude CS rate constants and that the CS states of conformers possessing larger values of $\tilde{\theta}$ dominate the observed spectrum at later times. The fast decay component suggests that there is extremely rapid depopulation of CS-state structures that feature the most extensive conjugation ($\sim 180 \mathrm{fs}$). These data show that as electronically excited ${ }^{\mathbf{1}} \mathbf{P Z n} *() \mathbf{P I}$ conformers with increasingly larger average $\mathbf{P Z n}$-to-PI interplanar torsional angles are depopulated with time, the $\mathbf{P Z n}^{+}() \mathbf{P I}^{-} \mathbf{P Z n}$-to- $\mathbf{P I} \tilde{\theta}$ value evolves from 49 to 67° over a $40-\mathrm{ps}$ time domain. While similar dynamics are evident for $\mathbf{P Z n}-\mathbf{P I}$, discrimination of the disparate torsional angle-dependent ET dynamics is more difficult as the mean angle θ is close to 90° and k_{CS} is of larger magnitude. ${ }^{10}$

In summary, we have assessed the mean PZn-to-PI interplanar torsional angle of electronically excited structural conformers that undergo ET within the sub-ps time domain for both $\mathbf{P Z n}-\mathbf{P I}$ and $\mathbf{P Z n}() \mathbf{P I}$ and have determined for the case of PZn()PI how this angle evolves with time. Finally, because vibrational transition moments are often known and typically localized, this work underscores that polarized visible pump/IR probe spectroscopy defines a valuable tool to interrogate structures in both electronically excited and CS states; this fact, coupled with the ultrafast time resolution and high sensitivity, makes the technique ideally suited to probe a range of mechanistic issues relevant to charge-transfer reactions.

Acknowledgment. This work was supported through the National Institutes of Health. M.J.T. thanks the Office of Naval Research (N00014-98-1-0725) and the MRSEC Program of the National Science Foundation (DMR-00-79909) for equipment grants for transient optical instrumentation.

Supporting Information Available: Details regarding experimental design and data acquisition (PDF). This material is available free of charge via the Internet at http://pubs.acs.org.

References

(1) (a) Cave, R. J.; Siders, P.; Marcus, R. A. J. Phys. Chem. 1986, 90, 14361444. (b) Beratan, D. N. J. Am. Chem. Soc. 1986, 108, 4321-4326. (c) Toutounji, M. M.; Ratner, M. A. J. Phys. Chem. A 2000, 104, 85668569.
(2) (a) Helms, A.; Heiler, D.; McLendon, G. J. Am. Chem. Soc. 1991, 113, 4325-4327. (b) Khundkar, L. R.; Perry, J. W.; Hanson, J. E.; Dervan, P. B. J. Am. Chem. Soc. 1994, 116, 9700-9709. (c) Daub, J.; Engl, R.; Kurzawa, J.; Miller, S. E.; Schneider, S.; Stockmann, A.; Wasielewski, M. R. J. Phys. Chem. A 2001, 105, 5655-5665.
(3) (a) Anfinrud, P. A.; Han, C.; Hochstrasser, R. M. Proc. Natl. Acad. Sci. U.S.A. 1989, 86, 8387-8391. (b) Okamoto, H.; Kinoshita, M. J. Phys. Chem. A 2002, 106, 3485-3490; Kumble, R.; Howard, T. D.; Cogdell, R. J.; Hochstrasser, R. M. J. Photochem. Photobiol., A 2001, 142, 121126. (c) Heimer, T. A.; Heilweil, E. J. Bull. Chem. Jpn. 2002, 75, 899908. (d) Marin, T. W.; Homoelle, B. J.; Spears, K. G. J. Phys. Chem. A 2002, 106, 1152-1166.
(4) (a) Redmore, N. P.; Rubtsov, I. V.; Therien, M. J. Inorg. Chem. 2002, 41, 566-570. (b) Redmore, N. P.; Rubtsov, I. V.; Therien, M. J. J. Am. Chem. Soc. 2003, 125, 2687-2696. (c) Yoshida, N.; Ishizuka, T.; Yofu, K.; Marukami, M.; Miyasaka, H.; Okada, T.; Nagata, Y.; Itaya, A.; Cho, H. S.; Kim, D.; Osuka, A. Chem. Eur. J. 2003, 9, 2854-2866.
(5) The excited-state transient IR signals of $\mathbf{P Z n}-\mathbf{P I}$ and $\mathbf{P Z n}-()$-PI are negligible relative to those of their respective CS states in the 1610$1800 \mathrm{~cm}^{-1}$ region.
(6) Gouterman, M. In The Porphyrins; Dolphin, D., Ed.; Academic Press: London, 1978; Vol. III, pp 1-165.
(7) (a) Kumble, R.; Palese, S.; Lin, V. S.-Y.; Therien, M. J.; Hochstrasser, R. M. J. Am. Chem. Soc. 1998, 120, 11489-11498. (b) Shediac, R.; Gray, M. H. B.; Uyeda, H. T.; Johnson, R. C.; Hupp, J. T.; Angiolillo, P. J.; Therien, M. J. J. Am. Chem. Soc. 2000, 122, 7017-7033. (c) Rubtsov, I. V.; Susumu, K.; Rubtsov, G. I.; Therien, M. J. J. Am. Chem. Soc. 2003, 125, 2687-2696. (d) Wynne, K.; Hochstrasser, R. M. Chem. Phys. 1993, 171, 179-188. (e) Wynne, K.; LeCours, S. M.; Galli, C.; Therien, M. J.; Hochstrasser, R. M. J. Am. Chem. Soc. 1995, 117, 3749-3753.
(8) Experimentally determined $\tilde{\theta}$ can represent a θ angle range limited by two different distribution scenarios: (i) narrow distribution around $\tilde{\theta}$ and (ii) wider distribution centered at 90° having, if Gaussian, a mean distribution width of approximately $90^{\circ} \theta$.
(9) Rubtsov, I. V.; Hochstrasser, R. M. J. Phys. Chem. B 2002, 106, 91659171.
(10) Rubtsov, I. V.; Kang, Y.; Redmore, N. P.; Therien, M. J. Manuscript in preparation.
JA0305499

